direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C32.28He3, C6.5C3≀C3, (C3×C6).18He3, C33.5(C3×C6), C32⋊C9.11C6, (C32×C6).5C32, C32.33(C2×He3), C6.2(C3.He3), (C6×3- 1+2).2C3, (C3×3- 1+2).5C6, C3.8(C2×C3≀C3), (C2×C32⋊C9).2C3, C3.4(C2×C3.He3), SmallGroup(486,67)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C32.28He3
G = < a,b,c,d,e,f | a2=b3=c3=e3=1, d3=b-1, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, fdf-1=bde-1, fef-1=b-1e >
Subgroups: 198 in 70 conjugacy classes, 24 normal (8 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, 3- 1+2, C33, C3×C18, C2×3- 1+2, C32×C6, C32⋊C9, C3×3- 1+2, C2×C32⋊C9, C6×3- 1+2, C32.28He3, C2×C32.28He3
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C2×He3, C3≀C3, C3.He3, C2×C3≀C3, C2×C3.He3, C32.28He3, C2×C32.28He3
(1 100)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 87)(11 88)(12 89)(13 90)(14 82)(15 83)(16 84)(17 85)(18 86)(19 96)(20 97)(21 98)(22 99)(23 91)(24 92)(25 93)(26 94)(27 95)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)(109 115 112)(110 116 113)(111 117 114)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)(136 142 139)(137 143 140)(138 144 141)(145 151 148)(146 152 149)(147 153 150)(154 160 157)(155 161 158)(156 162 159)
(1 40 30)(2 41 31)(3 42 32)(4 43 33)(5 44 34)(6 45 35)(7 37 36)(8 38 28)(9 39 29)(10 159 23)(11 160 24)(12 161 25)(13 162 26)(14 154 27)(15 155 19)(16 156 20)(17 157 21)(18 158 22)(46 59 72)(47 60 64)(48 61 65)(49 62 66)(50 63 67)(51 55 68)(52 56 69)(53 57 70)(54 58 71)(73 95 82)(74 96 83)(75 97 84)(76 98 85)(77 99 86)(78 91 87)(79 92 88)(80 93 89)(81 94 90)(100 121 111)(101 122 112)(102 123 113)(103 124 114)(104 125 115)(105 126 116)(106 118 117)(107 119 109)(108 120 110)(127 140 153)(128 141 145)(129 142 146)(130 143 147)(131 144 148)(132 136 149)(133 137 150)(134 138 151)(135 139 152)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(2 31 41)(3 42 32)(5 34 44)(6 45 35)(8 28 38)(9 39 29)(10 162 20)(11 14 17)(12 19 158)(13 156 23)(15 22 161)(16 159 26)(18 25 155)(21 24 27)(46 52 49)(47 70 63)(48 58 68)(50 64 57)(51 61 71)(53 67 60)(54 55 65)(56 62 59)(66 72 69)(73 76 79)(74 86 93)(75 91 90)(77 89 96)(78 94 84)(80 83 99)(81 97 87)(82 85 88)(92 95 98)(101 112 122)(102 123 113)(104 115 125)(105 126 116)(107 109 119)(108 120 110)(127 133 130)(128 151 144)(129 139 149)(131 145 138)(132 142 152)(134 148 141)(135 136 146)(137 143 140)(147 153 150)(154 157 160)
(1 98 52 7 95 49 4 92 46)(2 80 57 8 77 63 5 74 60)(3 97 54 9 94 51 6 91 48)(10 142 123 16 139 120 13 136 126)(11 140 121 17 137 118 14 143 124)(12 134 109 18 131 115 15 128 112)(19 145 122 25 151 119 22 148 125)(20 135 108 26 132 105 23 129 102)(21 133 106 27 130 103 24 127 100)(28 86 50 34 83 47 31 89 53)(29 81 68 35 78 65 32 75 71)(30 76 69 36 73 66 33 79 72)(37 82 62 43 88 59 40 85 56)(38 99 67 44 96 64 41 93 70)(39 90 55 45 87 61 42 84 58)(101 161 138 107 158 144 104 155 141)(110 162 149 116 159 146 113 156 152)(111 157 150 117 154 147 114 160 153)
G:=sub<Sym(162)| (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,87)(11,88)(12,89)(13,90)(14,82)(15,83)(16,84)(17,85)(18,86)(19,96)(20,97)(21,98)(22,99)(23,91)(24,92)(25,93)(26,94)(27,95)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,160,157)(155,161,158)(156,162,159), (1,40,30)(2,41,31)(3,42,32)(4,43,33)(5,44,34)(6,45,35)(7,37,36)(8,38,28)(9,39,29)(10,159,23)(11,160,24)(12,161,25)(13,162,26)(14,154,27)(15,155,19)(16,156,20)(17,157,21)(18,158,22)(46,59,72)(47,60,64)(48,61,65)(49,62,66)(50,63,67)(51,55,68)(52,56,69)(53,57,70)(54,58,71)(73,95,82)(74,96,83)(75,97,84)(76,98,85)(77,99,86)(78,91,87)(79,92,88)(80,93,89)(81,94,90)(100,121,111)(101,122,112)(102,123,113)(103,124,114)(104,125,115)(105,126,116)(106,118,117)(107,119,109)(108,120,110)(127,140,153)(128,141,145)(129,142,146)(130,143,147)(131,144,148)(132,136,149)(133,137,150)(134,138,151)(135,139,152), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,31,41)(3,42,32)(5,34,44)(6,45,35)(8,28,38)(9,39,29)(10,162,20)(11,14,17)(12,19,158)(13,156,23)(15,22,161)(16,159,26)(18,25,155)(21,24,27)(46,52,49)(47,70,63)(48,58,68)(50,64,57)(51,61,71)(53,67,60)(54,55,65)(56,62,59)(66,72,69)(73,76,79)(74,86,93)(75,91,90)(77,89,96)(78,94,84)(80,83,99)(81,97,87)(82,85,88)(92,95,98)(101,112,122)(102,123,113)(104,115,125)(105,126,116)(107,109,119)(108,120,110)(127,133,130)(128,151,144)(129,139,149)(131,145,138)(132,142,152)(134,148,141)(135,136,146)(137,143,140)(147,153,150)(154,157,160), (1,98,52,7,95,49,4,92,46)(2,80,57,8,77,63,5,74,60)(3,97,54,9,94,51,6,91,48)(10,142,123,16,139,120,13,136,126)(11,140,121,17,137,118,14,143,124)(12,134,109,18,131,115,15,128,112)(19,145,122,25,151,119,22,148,125)(20,135,108,26,132,105,23,129,102)(21,133,106,27,130,103,24,127,100)(28,86,50,34,83,47,31,89,53)(29,81,68,35,78,65,32,75,71)(30,76,69,36,73,66,33,79,72)(37,82,62,43,88,59,40,85,56)(38,99,67,44,96,64,41,93,70)(39,90,55,45,87,61,42,84,58)(101,161,138,107,158,144,104,155,141)(110,162,149,116,159,146,113,156,152)(111,157,150,117,154,147,114,160,153)>;
G:=Group( (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,87)(11,88)(12,89)(13,90)(14,82)(15,83)(16,84)(17,85)(18,86)(19,96)(20,97)(21,98)(22,99)(23,91)(24,92)(25,93)(26,94)(27,95)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,160,157)(155,161,158)(156,162,159), (1,40,30)(2,41,31)(3,42,32)(4,43,33)(5,44,34)(6,45,35)(7,37,36)(8,38,28)(9,39,29)(10,159,23)(11,160,24)(12,161,25)(13,162,26)(14,154,27)(15,155,19)(16,156,20)(17,157,21)(18,158,22)(46,59,72)(47,60,64)(48,61,65)(49,62,66)(50,63,67)(51,55,68)(52,56,69)(53,57,70)(54,58,71)(73,95,82)(74,96,83)(75,97,84)(76,98,85)(77,99,86)(78,91,87)(79,92,88)(80,93,89)(81,94,90)(100,121,111)(101,122,112)(102,123,113)(103,124,114)(104,125,115)(105,126,116)(106,118,117)(107,119,109)(108,120,110)(127,140,153)(128,141,145)(129,142,146)(130,143,147)(131,144,148)(132,136,149)(133,137,150)(134,138,151)(135,139,152), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,31,41)(3,42,32)(5,34,44)(6,45,35)(8,28,38)(9,39,29)(10,162,20)(11,14,17)(12,19,158)(13,156,23)(15,22,161)(16,159,26)(18,25,155)(21,24,27)(46,52,49)(47,70,63)(48,58,68)(50,64,57)(51,61,71)(53,67,60)(54,55,65)(56,62,59)(66,72,69)(73,76,79)(74,86,93)(75,91,90)(77,89,96)(78,94,84)(80,83,99)(81,97,87)(82,85,88)(92,95,98)(101,112,122)(102,123,113)(104,115,125)(105,126,116)(107,109,119)(108,120,110)(127,133,130)(128,151,144)(129,139,149)(131,145,138)(132,142,152)(134,148,141)(135,136,146)(137,143,140)(147,153,150)(154,157,160), (1,98,52,7,95,49,4,92,46)(2,80,57,8,77,63,5,74,60)(3,97,54,9,94,51,6,91,48)(10,142,123,16,139,120,13,136,126)(11,140,121,17,137,118,14,143,124)(12,134,109,18,131,115,15,128,112)(19,145,122,25,151,119,22,148,125)(20,135,108,26,132,105,23,129,102)(21,133,106,27,130,103,24,127,100)(28,86,50,34,83,47,31,89,53)(29,81,68,35,78,65,32,75,71)(30,76,69,36,73,66,33,79,72)(37,82,62,43,88,59,40,85,56)(38,99,67,44,96,64,41,93,70)(39,90,55,45,87,61,42,84,58)(101,161,138,107,158,144,104,155,141)(110,162,149,116,159,146,113,156,152)(111,157,150,117,154,147,114,160,153) );
G=PermutationGroup([[(1,100),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,87),(11,88),(12,89),(13,90),(14,82),(15,83),(16,84),(17,85),(18,86),(19,96),(20,97),(21,98),(22,99),(23,91),(24,92),(25,93),(26,94),(27,95),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105),(109,115,112),(110,116,113),(111,117,114),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132),(136,142,139),(137,143,140),(138,144,141),(145,151,148),(146,152,149),(147,153,150),(154,160,157),(155,161,158),(156,162,159)], [(1,40,30),(2,41,31),(3,42,32),(4,43,33),(5,44,34),(6,45,35),(7,37,36),(8,38,28),(9,39,29),(10,159,23),(11,160,24),(12,161,25),(13,162,26),(14,154,27),(15,155,19),(16,156,20),(17,157,21),(18,158,22),(46,59,72),(47,60,64),(48,61,65),(49,62,66),(50,63,67),(51,55,68),(52,56,69),(53,57,70),(54,58,71),(73,95,82),(74,96,83),(75,97,84),(76,98,85),(77,99,86),(78,91,87),(79,92,88),(80,93,89),(81,94,90),(100,121,111),(101,122,112),(102,123,113),(103,124,114),(104,125,115),(105,126,116),(106,118,117),(107,119,109),(108,120,110),(127,140,153),(128,141,145),(129,142,146),(130,143,147),(131,144,148),(132,136,149),(133,137,150),(134,138,151),(135,139,152)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(2,31,41),(3,42,32),(5,34,44),(6,45,35),(8,28,38),(9,39,29),(10,162,20),(11,14,17),(12,19,158),(13,156,23),(15,22,161),(16,159,26),(18,25,155),(21,24,27),(46,52,49),(47,70,63),(48,58,68),(50,64,57),(51,61,71),(53,67,60),(54,55,65),(56,62,59),(66,72,69),(73,76,79),(74,86,93),(75,91,90),(77,89,96),(78,94,84),(80,83,99),(81,97,87),(82,85,88),(92,95,98),(101,112,122),(102,123,113),(104,115,125),(105,126,116),(107,109,119),(108,120,110),(127,133,130),(128,151,144),(129,139,149),(131,145,138),(132,142,152),(134,148,141),(135,136,146),(137,143,140),(147,153,150),(154,157,160)], [(1,98,52,7,95,49,4,92,46),(2,80,57,8,77,63,5,74,60),(3,97,54,9,94,51,6,91,48),(10,142,123,16,139,120,13,136,126),(11,140,121,17,137,118,14,143,124),(12,134,109,18,131,115,15,128,112),(19,145,122,25,151,119,22,148,125),(20,135,108,26,132,105,23,129,102),(21,133,106,27,130,103,24,127,100),(28,86,50,34,83,47,31,89,53),(29,81,68,35,78,65,32,75,71),(30,76,69,36,73,66,33,79,72),(37,82,62,43,88,59,40,85,56),(38,99,67,44,96,64,41,93,70),(39,90,55,45,87,61,42,84,58),(101,161,138,107,158,144,104,155,141),(110,162,149,116,159,146,113,156,152),(111,157,150,117,154,147,114,160,153)]])
70 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | 3J | 6A | ··· | 6H | 6I | 6J | 9A | ··· | 9X | 18A | ··· | 18X |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | 9 | 1 | ··· | 1 | 9 | 9 | 9 | ··· | 9 | 9 | ··· | 9 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | He3 | C2×He3 | C3≀C3 | C3.He3 | C2×C3≀C3 | C2×C3.He3 |
kernel | C2×C32.28He3 | C32.28He3 | C2×C32⋊C9 | C6×3- 1+2 | C32⋊C9 | C3×3- 1+2 | C3×C6 | C32 | C6 | C6 | C3 | C3 |
# reps | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 12 | 12 | 12 | 12 |
Matrix representation of C2×C32.28He3 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 8 | 13 | 5 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 6 | 2 | 11 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 13 | 14 | 9 |
0 | 0 | 0 | 8 | 0 | 5 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,11,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,0,17,0,8,0,0,0,0,17,13,0,0,0,0,0,5],[11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,6,0,0,0,0,7,2,0,0,0,0,0,11],[0,0,7,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,13,8,0,0,0,1,14,0,0,0,0,0,9,5] >;
C2×C32.28He3 in GAP, Magma, Sage, TeX
C_2\times C_3^2._{28}{\rm He}_3
% in TeX
G:=Group("C2xC3^2.28He3");
// GroupNames label
G:=SmallGroup(486,67);
// by ID
G=gap.SmallGroup(486,67);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,338,873,735]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=e^3=1,d^3=b^-1,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=b*d*e^-1,f*e*f^-1=b^-1*e>;
// generators/relations